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Abstract

Assembly language code provides both a daunting
challenge and a sterling opportunity for sofiware
reengineering. Ideally, we would like a system which,
when fed assembly code, would automatically produce
quality, maintainable high-level programs. That ideal, if
not impossible, is certainly far beyond current technol-
ogy. However, automation can profitably be applied to
part of the task of reverse-engineering assembly code, by
producing a “draft” of a high-level language version, to
be verified, modified and polished by competent sofiware
reengineers. In this paper we describe our progress on
developing a reengineer’s apprentice to aid reverse-
engineering of handwritten IBM 370 Assembly Code by
automatically translating it to a higher-level form. This
paper explores the problems that arise and some poten-
tial solutions, and describes the implementation of Man-
drake, a system that performs an interesting collection of
the reengineer’s apprentice tasks.

1. Introduction

Many large software systems developed several decades
ago are still in use today. These systems were built using
platforms and languages that are increasingly obsolete.
Their owners would often like to upgrade these applica-
tions to modern workstations and current languages, but
are restrained by the cost of rewriting applications. This
problem is particularly acute for programs developed in
assembly language, which lack even a pretense of port-
ability. In general, we would like to preserve the fruits of
years of requirements analysis, design, and debugging,
but typically this knowledge is represented solely in the
source code. Manually translating such code is tedious

-and expensive. Our goal here is to automatically levitate
such low-level code to a higher level, thereby simplifying
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software renovation. We recognize that quality, maintain-
able code will not be the product of such a transformation,
but believe that producing quality high-level code can be
greatly facilitated by a program that does much of the
drudge work.

In this paper we describe Mandrake, a reengineer’s ap-
prentice that translates IBM 370 assembler code to a more
compact and readable high-level form. Our goal is trans-
lated code that approaches the quality of natively-written
high-level code, rather than simply being a Turing-
equivalent emulation. We work under the assumption
that we’re dealing with handwritten assembler (as op-
posed to assembly code that was originally produced by a
compiler [1,2]) and is in the same spirit as the Main-
tainer’s Assistant [3]. In contrast with the Maintainer’s
Assistant, we are more concerned with the heuristic infer-
ence of almost-always true transformations than in pure
semantics preservation. Our task is to infer the implicit
patterns and idioms of human coding, not the rules of a
compiler. . :

We note that an assembly programmer can take great
liberties. Implicit overlays, casts, spaghetti control struc-
tures, type muddles and dispersing coherent computation
to different parts of the program are common faults. To
make the task tractable, we must recognize our limita-
tions: we’re not going to be able to successfully translate
every legal assembly-code source program. We assume
that programs are written in a relatively disciplined style,
avoiding “pathologies.” Second, the high-level transla-
tions are intended for human consumption, as an aid to
understanding the assembly source, rather than for indis-
criminate execution. Absolute correctness, while desir-
able, is to be subordinated to readability.

2. Overview

Our overall levitation process can be understood as
having three major steps: '
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Figure 1. The steps

* An initial modular translation to a wide-spectrum
working language.

* A set of transformations that progressively replace
low-level constructs in the working language with
higher-level forms.

* A translation from the higher-level form to the syntax
of a particular target language.

These steps are illustrated in Figure 1.

By a modular translation, we mean one that is gener-
ally line-by-line. (This is not an absolute criterion be-
cause it is convenient to recognize and translate directly
certain common multiline idioms.) A wide-spectrum lan-
guage is one that provides both low-level machine-
oriented constructs such as GOTOs and byte pointers,
and higher level structures like if-statements, while-loops
and arrays. C is an example of a- wide-spectrum language.
The language we use is similar to C except it has a more
uniform syntax and semantics, and some additional con-
structs. Translating from a wide-spectrum language to a
particular target language requires mapping the constructs
in the wide-spectrum language to target language concepts
and generating the appropriate syntax. The difficulty of
this task varies by the flexibility of the target. Mandrake
currently performs the first two steps. Thus, Mandrake is
a system that reads in IBM assembler and produces
pseudo-code that looks a lot like C.

2.1. Idiosyncrasies of assembler

Levitating assembler (more specifically, IBM 370 as-
sembler) requires dealing with many idiosyncrasies.
Some of the more critical ones for producing correct,
maintainable code are

+ Data continuity. Assembler allows the programmer
to conceptualize a single data space which is flagged
by certain names. It is common in assembler to pro-
vide multiple aliases fér particular storage, based on
their offset to different names. Good, maintainable
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spectrum
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language
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High-level
language

for levitation

high-level code (GMHLC) segments data into ex-
plicit records and arrays without regard to the ar-
rangement of these elements with respect to each
other.

» Initialization. Assembler provides a number of dif-
ferent ways to initialize storage, often based on the
programmer’s knowledge of data encodings or un-
usual repetition operators. GMHLC initializes data
with respect to the constants of its data type; typical
high-level languages lack complex, iterative initiali-
zation operators.

» Addressing. Assembler addressing is usually in
terms of bytes. Thus, the fifth element of an array of
twelve byte records is offset 12*(5-1)=48 from the
base. GMHLC addressing is in terms of types. The
fifth element of an array of anything is index 5.

- Grain size. Assembly code is fine-grained. Rela-
tively little is accomplished by a single statement.
With high-level languages, a single statement may
evaluate a complex mathematical expression or
(including its substatements) perform a complex it-
erative computation.

¢ Control structures. The only control structures in
assembler are varieties of GOTOs. GMHLC uses
more expressive iteration, conditional, error-handling
and subprogram mechanisms.

» Character encoding. IBM assembler usually uses
EBCDIC, a somewhat quirkier encoding than ASCII.

« Conditionals. Assemblers incorporate conditional
branching in a two-step progress, first by setting a
condition code, then (at perhaps a textually and com-
putationally remote point) branching with respect to
the condition code. GMHLC uses conceptually co-
herent, high-level constructs like if and case state-
ments.

* Precision. In assembly language, numerical precision
is maintained by the programmer, who must maneu-



ver through a maze of half, full and double word op-
erations, and simple instructions that produce multi-
register answers. GMHLC declares the types of data
and allows the compiler to maintain precision, use
the appropriate operators, and automatically perform
necessary casts.

2.2. Pathologies

These differences give rise to a number of pathologies
that make translation difficult. Clearly, extreme patholo-
gies (like self-modifying code) are outside the range of
this system. However, other pathologies are common,
and are pathological only when misused. They cannot be
ignored. One such pathology is the potential of assembly
language data references to range over the entire space of
data. This is problematical because the correctness of cer-
tain transformations depends on tracking set/use depend-
encies through the code. Since an assembly language ref-
erence can point to an arbitrary data location, such de-
pendencies are in general undecidable. (For example, a
section of code that ostensibly resets an element in an
array might use an out-of-bounds reference to reset an arbi-
trary memory location, even a location in the execution-
path of the program.) Adopting the conservative position
that every use reference is dependent on every set reference
is impractical, as then few transformations would ever be
legal. One possibility is to use a theorem-prover to try to
restrict the dependencies in particular instances, but that
was not considered practical within the context of this
project. Instead, we assume that programmer discipline
excludes out-of-bound references—that is, if a offset refer-
ence is made with respect to an array base, that the value
itself lies within the array.

Another issue is one that applies to any translation
task. The source programming language may conflate
concepts that are distinguished in the target language. For
example, in C the null pointer, false and the integer zero
can all be freely represented as 0. This poses problems
when translating to languages that distinguish these con-
cepts (e.g., Ada.) High-quality translation demands the
contextually appropriate constant. In the case of IBM as-
sembler, for example, the datum definitions DC C'a’
(data constant character ‘a’) and DC X'81' (data con-
stant hexadecimal ‘81”) are equivalent, and assemble into
the same machine code. However, the usages are different.
If a translator respects the usage, as it should, the first
form will be translated as a character, and the second as a
number. On the other hand, a poorly-written assembly
program might not follow this convention. This has the
consequence that the validity of the translation may de-
pend on the stylistic quality of the assembly source.

Because of these caveats, it is inadvisable to rely on
the correctness of the translation. Mandrake is envisaged
as an aid to human understanding of the assembly code
rather than an autonomous translator. (In a porting situa-
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tion, the output should be understood as a first draft to be
manually checked, rather than the final translation.)

Having presented the above disclaimers, we add that
the practical goal of the project was to accurately translate
programs of the stylistic quality found in -case studies
contained in a text (e.g., [4]) on IBM assembler pro-
gramming.

2.3. Overview of levitation

The operation of Mandrake can be divided into four
steps, which cover the first two stages of the overal][ levi-
tation process above:

[1.] Initial translation into primitive (low-level)
working language code.

Determining the control-flow and data-flow
(set/use dependencies).

Simplification and redesign of variables. ;
GOTO elimination and procedure introduction.

[2.1]

[2.2]
[2.3]

We describe each phase in greater detail in subsequent
sections. We have attempted to make the exposition self-
contained so that it does not require a knowledge of IBM
370 assembly code. Also, the translations to workmg
language that appear in examples have been written in an
easily understood pseudocode form.

IBM 370 Assembly Language has a large varlety of in-
structions and features. Mandrake’s coverage is incom-
plete. Later in the paper, we will summarize the omitted
features and discuss what is needed to include them.

Mandrake is implemented in Reasoning Systems’
Software Refinery [5]. This system provides support for
building systems to manipulate programs,  including
parsers to convert a text program into an abstract syntax
tree (AST), the ability to decorate the nodes of such trees
with additional information, and a rule system that facili-
tates pattern-based processing and transformation of the
AST structures. Mandrake is one tool developed as part
of Lockheed Martin’s InVision project to aid software
renovation [6].

3. Initial translation

Before the actual translation to working language code,
there is a “preparation phase” that modifies the assembly
code to make it easier to translate. These steps are shown
in Figure 2. The preparation phase is needed because
IBM 370 assembly language provides a variety of labor-
saving ways for programmers to specify byte-counts and
other values that are known or computable at assembly- -
time, but are tedious to express explicitly. For example,
the expression L' * indicates the length in bytes of the
machine-code form of the instruction in- which it occurs.
The translator, on the other hand, is better at dealing with
explicit numeric values,
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Figure 2. Initial translation steps

.- The preparation phase also makes explicit (by decorat-
ing the code) certain implicit or contextual information.
For example, the assembly code may contain indirect
references to data that rely on the contiguity of memory:

PUT PRINTER RESULT

bCc

RESULT THE DAY IS: '
W DS 10C
PRINTER DCB LRECL=23

Here the PUT statement prints not only the RESULT
string but also W! This is because the record length (23)
for the printer specification reaches beyond the byte length
(13) of RESULT to include the byte length (10) of W. The
translation of the PUT instruction is facilitated by gather-
ing symbol-table information, so that the record length
and element structures are easily accessible from the PUT
statement.

370 assembler allows greater flexibility in the initiali-
zation of data areas than is usually available in high-level
languages. For example, (the functional equivalent of) a
string may be initialized in a way that sets different char-
acter regions to varying values (including undefined). We
have included similar flexibility in the working language.
This preserves the modularity of the initial translation.
(Later transformations could replace these unusual forms
with procedural initialization routines, but this has not
been implemented.)

The translation to primitive working language code
has a principal phase that proceeds in postorder relative to
the AST. Thus, the arguments of instructions are trans-
lated before the instructions themselves. However, contex-
tual information is needed, since identically-appearing
expressions may translate differently depending on the
argument type, which in turn depends on the instruction
type. Similarly, idioms are translated first to preempt the
normal translations.

Two special issues arise for 370 assembly code: condi-
tion codes, and even-odd register pairs. The condition
code is used to facilitate branching (changes in the flow of
control). This is actually a two-bit quantity in the process
status word, but may be more usefully thought of as a set
of four mutually-exclusive global Boolean flags whose
values are set when a comparison statement is executed.
(Many arithmetic statements also set the condition code
to record certain implicit comparisons.) The meanings of
the global flags vary according to the type of statement,
but generally represent the conditions x = v, x < v,

60

and x > v for relevant values of x and vy, and suitable
(type-specific) interpretations of the comparison relations.
The fourth flag is used to indicate errors. Branch state-
ments may be conditioned on arbitrary disjunctions of the
flags.

We have designed the translation to primitive working
language code to introduce additional statements that
explicitly set four global Boolean variables corresponding
to the condition code flags. This expands the volume of
code. Subsequent simplifying transformations based on
data-flow analysis (discussed later) eliminate these glo-
bals. For example, the sequence

CR 3,4
BC 13,F00

compares (as integers) the contents of registers 3 and 4,
and then branches on a not-greater-than condition to FOO.
This initially translates to the verbose

CCO « =

CCl ¢ (R3 <

CC2 ¢ (R3 >

CC3 ¢« false;

if (CCO or CCl or CC3) then
goto FOO;

endif;

(R3 R4) ;
R4);

R4);

which is eventually simplifies to

if (R3 <= R4) then
goto FOO;
endif;

This theme of initial expansion followed by contraction
also occurs in the handling of so-called even-odd register
pairs. This is a mechanism used in 370 assembly lan-
guage for double-precision integers. Although double-
precision is infrequently used, it is built into the multi-
plication and division instructions. This requires an ini-
tial complex translation for these operations. The transla-
tion can later be simplified subject to reasonable assump-
tions on the ranges of the inputs and outputs. The system
attempts to prove the validity of these assumptions from
the context of the code. If unsuccessful, it assumes them
to be true anyway, and includes assertions to that effect in
the translation. This allows a human expert to make
common sense decisions regarding their validity. In some
cases, the assertions may become runtime checks or
comments in the reengineered code.
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4. Working Language Manipulation

Having translated the assembler into the wide spec-
trum working language, the system proceeds to analyze
the working language program and simplify it. The major
steps of this analysis and simplification are illustrated in
Figure 3.

4.1. Control-flow and data-flow

The code-improvement transformations described in
subsequent sections require information about the flow of
control and data within the program. This is computed in
a preliminary information-gathering phase.

Our control-flow graph algorithm is relatively
straightforward and unremarkable. One potential problem
is the possibility of computed GOTOs, where the destina-
tion of a branch instruction may vary at runtime. In prac-
tice, computed GOTOs are rare except for returns from
internal subroutines. In that case, the subroutine linkage
is generally coded in a stereotyped way, which makes it
possible to determine a restricted set of return locations.
Arecs for each of these are included in the flowgraph. (Note
that the occurrence of an arc indicates a possible transi-
tion, not a mandatory one. This is another case where a
workable translation may depend on a non-pathological
coding style in the assembly source.) Information about
the return location of an internal subroutine must also be
saved at the calling location, for use by later transforma-
tions that introduce procedure calls.

By data-flow analysis, we mean construction of the
chains of set/use dependencies in the code. For reasons
discussed above, dependency analysis is problematical.
However, in practice it is rarely an issue, except in code
that dereferences complex pointer structures.

The set/use computation involves determining a re-
stricted collection of ser locations that can affect the value
of a variable at a particular use location. A standard algo-
rithm [7] is used to propagate lists of setters down the
control-flow graph to link up with users that depend upon
them. )

We have noticed some cases in which the downward
propagation is inadequate for our purposes because of lost
information about setters outside of (and prior to) the code
being analyzed. Consider, for example, an external sub-
routine that splits into two branches after being started.
Register 4 is set on one branch, but is not mentioned on
the other. Suppose the two branches merge again, and

Figure 3. Working Language Manipulations
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then register 4 is used. According to the downward
propagation, R4 seems to have exactly one setter, but in
fact this register could have been set prior to entry into
this segment of code, and control could have passed
through the branch in which it was not reset. Missing
this possibility could lead to certain incorrect simplifica-
tions of the code. Although in our experiments this diffi-
culty has not arisen for subroutines, it would be a press-
ing issue if the system were to analyze arbitrary segments
of code in isolation from the rest of the program. One way
of rectifying this is to propagate imaginary “outside set-
ters” for each use reference in the segment of code, but this
seems unwieldy. A better alternative might be to com-
plement the downward propagation with an upward
propagation to determine the possible paths in which a
use reference may be affected by a setter from outside.
However, neither scheme has so far been implemented in
Mandrake.

4.2. Variable simplification and redesign

As discussed above, the initial translation to working
language code retains the fine-grained character of the as-
sembler. Reducing this to a more concise form requires
the elimination of intermediate variables.

Variable elimination is relatively straightforward once
the set/use information is known. If a variable is set to an
expression, and then used in only one place, and the ex-
pression is still live (its value has not been altered) at the
time of use, then the expression is substituted for the
variable, and the statement that sets the variable can be
eliminated. (These changes generally require an update of
the set/use information for the remaining variables, and of
the control-flow graph.) Substitutions may also be per-
formed in some cases that do not strictly conform to these
conditions. For example, if the variable that is set also
occurs in the set expression (e.g., X ¢ X + 1), then
the expression is not currently live after the set statement,
but may become live after the set statement is deleted so
that a substitution is possible. After substitution has cre-
ated complex algebraic expressions, Mandrake performs
various algebraic simplifications by pattern-directed
transformations.

Statements that set variables may be eliminated if the
variables are not subsequently used. This process re-
moves most condition code variables. Care must be taken
to preserve variables that are visible outside the code be-
ing analyzed.
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Figure 4. The GOTO-removal process

Mandrake then redesigns some of the remaining vari-
ables. For example, a segment of assembly code that
processes an integer array will generally use an index reg-
ister to step through the array. The register translates to
an integer variable that determines which element of the
array to work on next. Since all assembly language ad-
dresses are in bytes, the index is incremented by 4 to step
through successive elements. However, high-level code
uses word addresses rather than bytes, so that the index
ought to be incremented by 1. This requires isolating a
region of use of a variable, and superseding it with a re-
designed variable whose value is 1/4 that of the original.
More formally, we need to identify a collection S of set-
tings of a variable, and a collection U of uses, such that
every user of an element of S is in U, and every setter of
an element of U is in S. Suppose this is done, and X is
the variable. We introduce a new variable x such that X
= 4x. Each setting X <« e in S is replaced by x <
e/ 4, and for each use in U, we substitute 4x wherever X
occurs. Notice that a single statement, say X €« X+4,
may involve both a setting that is in S and a use that is
in U. (This may happen when the statement is in a loop.)
This poses no special problem. According to the above
rules, the statement is transformed to x ¢ (4x+4) /4,
which is simplified to x &« x+1.

The set/use information is also exploited to determine
inputs, outputs, and local variables for subroutines, de-
pending on whether first use is preceded by a set, and
whether settings are visible after exit. (Typically, in IBM
370 assembler, old values are saved and restored.)

4.3. Procedure introduction and GOTO
elimination

One of the critical issues in converting assembly code
to a more readable form is the replacement of GOTOs or
Jjumps by more structured statements. We may distin-
guish three basic types of jump: a returnless jump; a
jump that saves a return location (similar to a push-jump
in other assembly languages, but 370 assembly language
does not utilize a stack); and a jump that returns to a
saved location (similar to a pop-jump). We assume that
programmer discipline ensures that the first two types of
jump are to fixed locations in the control-flow graph, and
the third type can be limited to a static set of easily-
determinable return locations, one for each call.

Returnless jumps can be eliminated in favor of loops
and conditionals. Interestingly, auxiliary variables are not
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needed, as long as nested loops with multilevel exits are
allowed [8]. We have included a general loop construct
with multilevel exits in the working language.

Previous work on removing GOTOs (e.g., [9]) has in-
volved relatively ad-hoc methods. We have instead de-
veloped a general procedure based on the theory of finite
automata. This makes use of the fact that a finite-state
transition network can readily be converted to an equiva-
lent regular expression. The approach includes a method
for translating a computer program into a finite-state tran-
sition network, and a complex set of pattern-match opera-
tions to translate a resulting regular expression back into
a computer program. This process is illustrated in Fig-
ure 4. Reference [10] describes this algorithm in more
detail.

The removal of returnless jumps is algorithmic. We
have assumed that programmer discipline ensures other
kinds of jumps are only used to implement internal sub-
routines in-a stereotyped manner. Mandrake uses pattern-
directed transformations to replace returning jumps. by
high-level procedure calls and procedure definitions. This
requires surgery on the control-flow- graph. The control-
flow successor at the subroutine call-point is redirected to
the return location. The entry and exit of the subgraph
corresponding to the subroutine definition are also redi-
rected so that the definition will appear in an appropriate
region of the graph.

The introduction of procedure definitions and proce-
dure calls occurs before the conversion of the control-flow
graph to code involving loops and conditionals. This
allows the translator to correctly handle situations where
the saved return location does not immediately follow the
subroutine call-point in the assembly language text.

5. Coverage

In its current state, Mandrake handles most features of
IBM 370 assembler including integer arithmetic, string
operations, logic and comparisons, internal subroutines
and jumps. However, several important elements are not
yet covered. These include

* Floating point arithmetic. Floating point numbers
are undoubtedly important. While integer arithmetic
involves only register pairs, floating point arithmetic
may utilize register pairs, triplets, and quartets.
While Mandrake does not currently handle floating
point, an extension to deal with floating point does
not appear to involve new issues.



* Interrupts and exceptions. Interrupts, exceptions,
and direct manipulations of the process status word
appear to be beyond the reach of an automatic transla-
tion system at the present time, except perhaps for
stereotyped usages. However, such translation may
not be meaningful anyway in the context of reverse-
engineering, since it is ill-advised for GMHLC to
exploit exception mechanisms.

Packed/Zoned Decimals. Packed/Zoned decimal
arithmetic is an idiosyncratic feature of 370 assem-
bler, providing decimal representations using strings
of digits that can be manipulated directly by certain
instructions. Packed/zoned decimal arithmetic ap-
pears to have arisen from impoverished 1/O facilities.
Some uses can be eliminated by idiom recognition,
others uses can be translated to ordinary arithmetic
and the remaining uses can be expressed as string-
manipulations. Packed/Zoned arithmetic has a poten-
tial for expressing numbers with very high precision.
Translation of such uses may have to be considered
on a case-by-case basis, or may require custom trans-
lators.

Macros. Macros are widely used in legacy code, and
are the most important omission in the current sys-
tem. There are two possible approaches to handling
macros. The easier method is to expand before pars-
ing. This could be done by a string-based preproces-
sor, or indeed by the 370 Assembler system itself.
The drawback to this is that much of the higher-level
structure is lost in the expansion. An alternative ap-
proach is to treat the macros as part of the language.
However, IBM 370 assembler macros are meta-
syntactic. For example, macro arguments may be
concatenated as strings in the body of the macro defi-
nition prior to their interpretation as assembly lan-
guage tokens, making them difficult to parse before
macro expansion (because they may not obey the
syntax of the underlying non-macro assembly lan-
guage). On the other hand, an important use of mac-
ros in assembler is to provide a veneer of high-level
control constructs within the framework of legal as-
sembly code. In this case, it makes more sense to
parse the macros as high-level units rather than fol-
lowing the normal assembly language syntax. These
considerations suggest that macros be handled on a
case-by-case, custom basis.

DSECTS. DSECTS are generally used to pass com-
plex record structures between assembly language
program units. They are a significant omission in
Mandrake. It is difficult to anticipate the issues that
might arise in extending Mandrake in this direction,
but there would be a substantial payoff, since recogni-
tion of record structures is an important aspect of re-
verse-engineering.
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6. Examples

This section provides two examples of the performance
of Mandrake, the first (Zeller’s congruence) demonstrating
the ability of the system to simplify arithmetic expres-
sions and clichés, and the second illustrating the unravel-
ing of a spaghetti control structure to loops.

6.1. Example: Zeller’s congruence

The Zeller congruence is an algorithm for computing
the day-of-week given the date. For example, the algo-
rithm deduces that March 13, 1946 was a Wednesday.
The algorithm uses a formula that is based on a modified
Gregorian calendar where each year is considered to begin
on March 1. (January and February are considered to be-
long to the previous year.)

Assuming “/” indicates integer division (the remainder
is discarded), the formula gives the day-of-week number
W (0 is Sunday, 1 is Monday, etc.) as

W=[Q6M-2)/10+D+Y+¥/4+C/4-2Clmod 7

where M is the month number, D is the day of the month,
Y is the two-digit year within the century, and C is the
century. All numbers are with respect to the modified
calendar. Thus, for the 1946 date above, M=1, D=13,
Y=46, and C=19.

Figure 5 shows an assembly language program to
compute the day-of-week using the Zeller formula [4]. It
takes as input a date in the normal Gregorian calendar,
converts it to the modified calendar, and then applies the
formula.

Figure 6 shows the same program after Mandrake has
run. Note that the code is not only considerably simpler
than the original but that font-size has grown, too.

6.2. Example: simplifying control structures

Our next example illustrates goto elimination in pref-
erence for higher-level loops. Mandrake levitates the as-
sembly language matrix transposition program of Figure
7 (once again, from [4]) to the higher-level working lan-
guage program of Figure 8. The goto’s of this example
form straightforward nested loops; Mandrake’s GOTO
elimination algorithm [10] works with arbitrarily com-
plex spaghetti.

Besides these examples, the complete Mandrake sys-
tem has been applied to other case studies found in an
IBM 370 programming text [4]. In addition, part of the
system, the GOTO removal facility [10], has been applied
to industrial COBOL programs involving tens of thou-
sands of lines of code [11]. The lack of coverage for mac-
ros has inhibited the application of the whole Mandrake
system to large-scale examples.
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D R2,=F'10"

LR R9,R3

A R9,DAY

AR R9,R4

SR R9,R5

SR R9,R5

LR R7,R4

SR R6,R6

D R6,=F'4"

AR R9,R7

SR R4,R4

D R4,=F'4"

AR R9,R5

M R8,=F'1"

D RB,=F'7"

C R8,=F'0!

BNL STORE

A R8,=F'7"

CVD R8, TEMP

0TI TEMP+7,X'0F"

UNPK W(10),TEMP(8)

PUT PRINTER, RESULT

CLOSE (READER, , PRINTER)

L R13, SAVE+4

LM R14,R12,12(R13)

BR R14

DS 80C

EQU DATE

EQU DATE+10

EQU DATE+20

DS F

DC C' THE DAY IS: '

DS 10C

DS D

DS 18F

DCB DSORG=PS, MACRF=GM, DDNAME=SYSIN,
RECFM=F, LRECL=80, BLKSIZE=80,
EODAD=ENDDATA

DCB

DSORG=PS, MACRF=PM, DDNAME=SYSPRINT,
RECFM=FA, LRECL=23,BLKSIZE=23

END ZELLER

Figure 5. Zeller’s

Congruence: As-

sembly Language
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procedure ZELLER
locals R3, R5,
let DATE =
let DAY =
let W =
let READER =
DEVICE (PS,

let PRINTER
DEVICE (PS,

(in R14);
R4, R2R3,
(CHAR [80]
(INT* )?;
(CHAR [ 10]

R8;
)?;

)?;

GM, SYSIN, F, 80,

PM, SYSPRINT,
FA, 23, 23});
OPEN ( READER, INPUT,
PRINTER, OUTPUT) ;
GET ( READER, DATE);
if (! EOF) then
{ SSCANF ( DATE, "10d4", R3);
SSCANF ( (DATE + 10), 104",
* (INT* ) DAY);
(DATE + 20), "1io04d",
(R3 - 2);
0) then
R3 = (R3 + 12);
R5 = (R5 - 1)

SSCANF
set R3
if (R3
{ set

set

A0~

}
endif;
assert (R5 2 0);
set R4 = (R5 rem 100);
set RS = (R5 / 100);
set R2R3 = ((DOUBLE ) R3 * 26);
assert (R2R3 £ MAXINT);
set R8 =
(CC{(((((R2R3 - 2) / 10) +
*(INT* ) DAY) + R4) - R5) -
R5) + (R4 / 4)) + (R5 / 4))

rem 7);
if (R8 < 0) then
{
set R8 = (R8 + 7)
}
endif;
SPRINTF ( W, "10d4", RS8);
PUT ( PRINTER,
(CHAR* ) " THE DAY IS: ", W)}
endif;
CLOSE ( READER, PRINTER)
Figure 6. Zeller’s Congruence:

Translated Code

80);

R5);




7. Related Work

Feldman and Friedman [12] describe the Bogart sys-
tem for translating IBM assembly code. They identify
many of the same issues, and adopt a similar flow analy-
sis approach. However, Bogart produces code for direct
execution rather than for human consumption, and read-
ability is less of an issue. The paper focuses on a com-
parison with a pre-existing literal translator, and gives
less emphasis to the detailed steps and the idiosyncrasies
of 370 assembler. Bogart appears to differ from Mandrake
in not doing general GOTO removal, or idiom recogni-
tion.

The approach of using a wide-spectram working lan-
guage was introduced by Ward [13]. Ward uses a for-
mally-based language rather the C-like one considered
here. This has been applied to the task of translating IBM
assembler and other languages [14]. Transformations
within the formal language are guaranteed correct. How-
ever, our experience suggests that “almost-always” correct
interpretations are needed for readable translations. In

[14], semantic approximations or “loose translations” are
confined to the initial translation to the wide-spectrum
language. v

Andersen Consulting has developed the BAL/SRW
Assembler re-engineering workbench [15]. Like Man-
drake, this is a Refine-based system. The workbench con-
tains an offline unit that is comparable to Mandrake, and
an online unit that is more concerned with interactive
browsing. Rather than translating to a separate language,
BAL/SRW decorates the parsed assembly code with
higher-level abstract structures. For example, it analyzes
control flow, and recognizes stereotypical patterns. Unlike
Mandrake, it does not appear to perform general GOTO
removal.

8. Conclusions

We have described Mandrake, a system to aid in
reengineering handwritten IBM 370 assembly code to -
quality, high-level code. The gap from assembly language
to high-level is a large one, and compromises are neces-

hhkhkhkkkkhkhhkhkhhhhkhhkbhkhhkhkhhrkhkrkrAhkkhkrhkhhkhkkrkhhhkhkdhhhhkhkhkkrhhhkrhhkrhk

** SUBPROGRAM TO TRANSPOSE AN N x N MATRIX IN PLACE.

** ASSUME N AND ARRAY ARE DEFINED

% Kk d kK ke Kk ke ok ok ok ko kA Rk ok ke ke ke ke ke ok ok ke ke ek kR ok ok ok ok ok e e ok ok ok ke ke kR ke ok ok e e e Rk ke ok e e e ke ok ke ke ke ke

TRANS ST R14,TSAVEl4 SAVE RETURN ADDRESS
L R3,N GET N
BCTR R3,0 N-1
IR R10,R3 R10 = OUTER LOOP CONTROL = N - 1
M R2,=F'4" R3 = CONSTANT = 4*(N -1)
La R2,4(R3) R2 = CONSTANT = 4*(N -1) + 4 = 4*N
LA R8,0 R8 = INDEX TO COLUMN ELEMENT = 0
LA R6,4 R6 = ADJ
* = NO. OF BYTES BETWEEN FIRST
* ELEMENT IN COLUMN AND ELEMENT
* IMMEDIATELY BELOW DIAGONAL
* REPEAT N - 1 TIMES:
TROUTLP LR R9,R10 R9 = INNER LOOP COUNTER L=N-1,...,1
LA R8,0(R8,R6) R8 = INDEX TO COLUMN ELEMENT
* IMMEDIATELY BELOW DIAGONAL
LA R7,0(R8,R3) R7 = INDEX TO ROW ELEMENT
* IMMEDIATELY RIGHT OF DIAGONAL
* - REPEAT L = C(R9) TIMES:
TRINLP L R4, ARRAY (R8) GET COLUMN ELEMENT
L R5,ARRAY (R7) GET ROW ELEMENT
ST R5, ARRAY (R8) INTERCHANGE
ST R4,ARRAY (R7) THEM
A R8,4 (R8) POINT TO NEXT COLUMN ELT.
LA R7,0(R7,R2) POINT TO NEXT ROW ELT.
BCT R9,TRINLP DECR./REPEAT UNTIL ZERO

* - END REPEAT (R8 NOW POINTS TO TOP OF NEXT COLUMN)

LA ADJ = ADJ + 4
BCT

* END REPEAT
L R14,TSAVE14
BR R14

Ds F

R6,4 (R6)
R10, TROUTLP

RETURN

TSAVE14 RETURN ADDRESS

DECR./REPEAT UNTIL ZERO

RESTORE RETURN ADDRESS

SAVE ARFA

Figure 7. Matrix transposition: Assembly Code
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procedure TRANS ();

end

set *(INT* ) TSAVE1l4d = R1l4;
set R3 = (*(INT* ) N - 1);
set R10 = R3;

assert (R3 £ (MAXINT /
set R804 = 0;

4});

set R604 = 1;
loop / 1
{ set R9 = R10:
set R804 = (R804 + R604);
set R704 = (R804 + R3);
loop / 2
{ set R4 = ARRAY [ R804];
set R5 = ARRAY [ R704}];
set ARRAY [ R804] = R5;
set ARRAY [ R704] = R4;
set R804 = (R804 + 1);
set R704 = (R704 + (R3 + 1));
set R9 = (R9 - 1);
if (R9 == 0) then
{exit / 2%
endif}
endloop / 2;
set R604 = (R604 + 1);
set R10 = (R10 - 1); -
if (R10 == 0) then
{exit / 1}
endif}

endloop / 1

sary: the system assumes some degree of discipline of

Figure 8. Matrix transposition: working
language translation

style in the assembly program input. This sufficed for the
satisfactory translation of programs of the level of quality

of case studies in a manual. Nevertheless, the issue of

correciness is a pressing one, and would seem to require a
long process of testing and evolution to achieve a robust
translation system.
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